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Note 

A New Technique for Solving 
Parker-type Wind Equations 

I. 1NTRo~ucT10N 

In recent years, the astrophysical community has come to learn of the existence 
of extremely energetic and dynamic phenomena on or near the surface of compact 
objects, such as neutron stars. Sources ranging in scale from the local (galactic) X- 
ray bursters [l] to the distant (cosmological) quasars [2] have shown evidence of 
violent, radiatively driven mass expulsion. Invariably, the duration of this mass loss 
has been long compared to the relevant dynamic time scale, and one is therefore led 
to consider the structure of quasi-static flows analogous to the solar wind studied 
extensively by Parker [3] in the 1960’s. 

It is well known that the differential equations describing time-independent mass 
outflux from a compact source possess a singularity (the “critical point”) where the 
fluid attains a velocity equal to the local sound speed (see Section II). On rare 
occasions, the equations admit an analytic solution; as a rule, however, numerical 
techniques must be employed to integrate through this singularity, and traditionally 
that is where the difficulties have been encountered. The various authors who have 
had to deal with this problem, have usually employed a customized technique that 
at times has sacrificed accuracy for ease of use (see Section II for an example). 
Matching the solution branches above and below the critical point is crucial to the 
process of finding the surface boundary conditions (which can be directly compared 
to the observations) as a function of the physical conditions at the base of the flow. 
In Section III of this paper, a new technique will be presented which should make 
this matching accurate and easily attainable. 

II. THE EQUATIONS AND TOPOLOGY OF THE SOLUTIONS 

The relevant fluid equations are the continuity equation (conservation of mass), 
the equations of momentum and energy conservation, and the equation of heat 
transport, in Eulerian form, under the constraint of time independence. We shall 
assume for the sake of clarity that the flow is spherically symmetric, although the 
procedure can quite simply be adapted to other geometries. The exact form of the 
equations depends on the physical conditions (such as the equation of state and 
photon mean free path), but the expressions can generally be reduced to a set of 
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two simultaneous, first-order differential equations in two unknowns (together with 
the constitutive relations: the equation of state, the internal energies of the gas and 
radiation, and the radiative opacities). For illustrative purposes, we shall take the 
fluid velocity u and the gas temperature T to be the dependent variables and the 
radius r to be the independent variable. The set of coupled differential equations 
can then be written in the form 

(1) 

and 

dT 
(2) 

where & is the total mass flux carried by the wind, M is the mass of the compact 
object, and 

D=v=-c;. (3) 

Here, c,(T) is either the adiabatic or isothermal sound speed, depending on the 
conditions. The critical point corresponds to the level in the flow where D = 0 (i.e., 
where v = c,, as indicated above). In order for the solution to be regular at this 
point, it is necessary that N also vanish there. 

The topology of the solutions to Eqs. (1) and (2) is shown schematically in Fig. 1 
(see, e.g., [4]). There are six families of solutions, two of which are transonic (i.e., 
u = c, at some critical radius r,). In most applications, the flow velocity is much 
smaller than the particle thermal velocity deep in the envelope where the matter is 
approximately in hydrostatic equilibrium. The flow must eventually attain escape 
velocity, however, and it therefore has a velocity in excess of the sound speed at suf- 
ficiently large radii. As such, the appropriate solutions for a study of quasi-static 
mass loss are those forming the transonic branch labelled “1” in Fig. 1. 

FIG. 1. The topology of solutions to (the wind) Eqs. (1) and (2). Of the six families labelled 1 to 6, 
only 1 and 2 are transonic. 
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To ensure that matching trajectories are joined at r(, the normal procedure is to 
start the integration (inwards and outwards) at that point. However, Taylor series 
expansions for u and T are difficult to use for this purpose, as can be seen 
immediately by inspection of Eq. (1). Evidently, (du/dr)l,< cannot be determined 
until after the solution is known. One method that has been employed [S] amounts 
to putting 

u=c,(r,)+$(r-r,), (4) 

and 

T=T(r,)+H (r-r,)+;: (r-rC)‘, 
I‘ rc 

but since both N and D + 0 at r‘, the integration can become unstable, thus leading 
to a loss of accuracy across the singularity. This problem can be circumvented by 
the technique outlined in the following section. 

III. METHOD OF SOLUTION 

Let us define a function 

@(u, T)=; ,+z . 
( > 

(6) 

Then, differentiating once with respect to r gives 

(7) 

which can further be reduced to the form 

This equation has no singularity (except at the origin), so that substitution of @ for 
u as one of the dependent variables yields a pair of coupled differential equations 
((2) and (8)) whose solution throughout the envelope may be readily obtained by 
use of an implicit integration scheme. 

As one might expect, the properties of @ are those that define the two transonic 
solutions (see Fig. 1). Its first two partial derivatives with respect to u are 

(9) 
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and 

2 2 

g2>0. 
II3 

(10) 

Thus, at any given r and T, @ attains its minimum value when u = c,: 

~imin = C,. (11) 

When solutions for CD and T have been obtained as functions of r, Eq. (6) may be 
inverted to find v(r): 

u*=@{l+-(;)lll’2}. (12) 

(Note that c, is the focal sound speed at the given level r.) Using the fact that 
@ > Qmin, it is easy to show that u + > c, and IL < c, (except at the critical point, 
where u, = u- = cS). Thus, for the transonic flows that interest us here, the desired 
solution branch is u for r < rC and u + for r > rr . Figure 2 shows a sketch of @ as a 
function of u, at a level rl where the sound speed is c,(rl). 

The requirement that N= 0 at r = r,. can readily be shown to be equivalent to the 
condition that 

do d~,i” -- 
dr- dr 

at r=r,.. (13) 

For practical purposes, this condition yields a constraint on the free parameters of 
the problem, thus restricting the allowed wind solutions to a two-parameter family, 
characterized by, for example, the temperature and density at the base of the flow. 
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FIG. 2. A sketch of @ as a function of v at a given radius r,. Once the (unique) solution @, = 
@(r,)/c,(r,) has been determined, Eq. (12) gives the two transonic branch values of the velocity: 
II+] =u+(r,) and u-, = o-(r,). These velocities become degenerate [u+~ = UK, = c,~, =cc,(rl)] at the 
critical point (r, = r,.). 
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IV. CONCLUSION 

We have seen that substitution of the new function @ for the velocity as one of 
the dependent variables removes the critical point (and hence the numerical dif- 
ficulties encountered there) from the set of coupled differential (wind) equations. 
This method has been used with great success in a study [6] of radiatively driven 
mass loss from the surface of X-ray bursting neutron stars. In such systems, it is 
crucial to know the outer boundary conditions as a function of the evolution of the 
deeper, hydrostatic layers of the neutron-star envelope. The simple and accurate 
technique described here for solving the equations of time-independent mass loss 
can be useful in other applications where such considerations are equally important. 
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